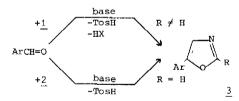
PREPARATION OF N-TOSYLMETHYLIMINO COMPOUNDS AND THEIR USE
IN THE SYNTHESIS OF OXAZOLES, IMIDAZOLES AND PYRROLES

H A Houwing, J Wildeman and A M. van Leusen\*


Department of Organic Chemistry, The University,

Zernikelaan, Groningen, The Netherlands

(Received in UK 14 November 1975; accepted for publication 27 November 1975)

We herein wish to describe the preparation and synthetic applications of a series of N-tosylmethylimino compounds of type 1

Recently, it was shown in our laboratory that tosylmethyl isocyanide (TosMIC,  $\underline{2}$ ) can be used successfully to cycloadd a CH-N=CH fragment to unsaturated substrates  $^1$  This process, involving an addition-cyclisation of TosMIC-anion (TosCHN=C) and concomitant loss of Tos $^{\Theta}$ , for example converts aldehydes to oxazoles  $^2$  Thus, the isocyano carbon of  $\underline{2}$  ends up in the, by necessity, <u>unsubstituted</u> 2-position of oxazole  $\underline{3}$  (R = H) By using imines of type  $\underline{1}$ , instead of TosMIC ( $\underline{2}$ ), 2-substituted oxazoles  $\underline{3}$  (R  $\neq$  H) are expected in a related process



We here illustrate the synthetic potentialities of N-tosylmethylimino derivates (1) in the synthesis of a number of oxazoles 3, imidazoles 4 and pyrroles 5 in a single operation at room temperature from aldehydes, aldimines and Michael acceptors, respectively (Scheme and Table I) So far, especially the results obtained with methyl N-tosylmethylthiobenzimidate (1c) seem promising In particular, 1c gives good yields of 2-phenyl substituted pyrroles with Michael acceptors as appears from the examples 5b,e,f

## SCHEME and TABLE 3 I

Tosch<sub>2</sub>N=C
$$\stackrel{R}{\sim}$$
  $\stackrel{1}{\sim}$  + Arch=chy

+ Arch=nAr'

Ar  $\stackrel{N}{\sim}$  R

Ar  $\stackrel{N}{\sim}$  R

 $\stackrel{Ar}{\sim}$   $\stackrel{Ar}{\sim}$  R

 $\stackrel{Ar}{\sim}$   $\stackrel{Ar}{$ 

| Product <sup>a</sup> | R    | х     |               | Ar                   | Ar'/Y        | yıeld           | (%) mp (°C)                                    | base/solvent      |
|----------------------|------|-------|---------------|----------------------|--------------|-----------------|------------------------------------------------|-------------------|
|                      | from | ToscH | N=CRX         | and alde             | hyde         |                 |                                                |                   |
| <u>3a</u>            | Me   | OMe   | ( <u>1a</u> ) | Ph                   | -            | 49              | 57-59<br>(rep <sup>4</sup> 58-60)              | NaH/DME-DMSO      |
| b                    | Me   | оме   | ( <u>1a</u> ) | p-ClPh               | -            | 63              | 74-75 5                                        | NaH/DME-DMSO      |
| <u>c</u>             | Ph   | SMe   | ( <u>1c</u> ) | p-0 <sub>2</sub> NPh | _            | 50              | 194 5-195 5                                    | t-BuOK/DME        |
|                      |      |       |               | -                    |              |                 | (rep <sup>5</sup> 189 5-190                    | 5)                |
|                      |      |       |               | and aldı             | mine         |                 |                                                |                   |
| <u>4a</u>            | Ph   | SMe   | ( <u>1c</u> ) | Ph                   | Ph           | 23              | 251-252 5 (subl)<br>(rep <sup>6</sup> 248-250) | NaH/DME-DMSO      |
| <u>b</u>             | Ph   | SMe   | ( <u>1c</u> ) | p-ClPh               | p-ClPh       | 51              | 203.5-204                                      | Nah/DME-DMSO      |
| <u>c</u>             | SMe  | SMe   | ( <u>1d</u> ) | p-ClPh               | p-ClPh       | 64              | 148-149 5                                      | t-BuOK/t-BuOH-DME |
|                      |      |       |               | and Mich             | ael acceptor |                 |                                                |                   |
| <u>5a</u>            | Me   | SMe   | ( <u>1b</u> ) | Ph                   | COPh         | 91 <sup>b</sup> | 235-236 (sl dec)<br>(rep <sup>7</sup> 231)     | NaH/DME-DMSO      |
| <u>b</u>             | Ph   | SMe   | ( <u>1c</u> ) | Ph                   | COPh         | 73              | 199 5-200 5                                    | NaH/DME-DMSO      |
| <u>c</u>             | SMe  | sMe   | ( <u>1d</u> ) | Ph                   | COPh         | 65              | 171-173 (sl dec)                               | NaH/DME           |
| ₫                    | OMe  | OMe   | ( <u>1g</u> ) | Ph                   | COPh         | 42              | dec at <u>ca</u> . 100                         | t-BuOK/THF        |
| <u>e</u>             | Ph   | SMe   | ( <u>1c</u> ) | Ph                   | COOMe        | 58              | 164 5-165 5                                    | Nah/DME-DMSO      |
| <u>f</u>             | Ph   | SMe   | ( <u>1c</u> ) | Ph                   | C≅N          | 63              | 266-267 (sl dec)                               | NaH/DME-DMSO      |

- a No heterocyclic products were obtained in reactions of p-chlorobenzaldehyde with

  1e or 1c, 1-methylindole-3-carbaldehyde with 1a, N-p-nitrobenzylidenemethylamine with

  1c, cinnamonitrile with 1a and 3-penten-2-one with 1a, reaction of 1e with p-nitro
  benzoylchloride (t-BuOK/DME) yields 2-chloro-5-p-nitrophenyl-4-tosyloxazole (20%),

  mp 187-189° (dimorphous)
- b. The same product was obtained in 75% by using 1a instead of 1b.

To rationalize the formation of the products  $\underline{3}$ ,  $\underline{4}$  and  $\underline{5}$  it seems logical to assume as the first step the generation of a 2-azaallyl anion (TosCH-N-CRX,  $\underline{6}$ ) by proton abstraction from the activated methylene. <sup>8,9</sup> Reaction of  $\underline{6}$  with the unsaturated substrate ( $\underline{1}$   $\underline{e}$  aldehyde, aldimine or Michael acceptor) could be either a [3+2] 1,3-anionic cycloaddition, <sup>10</sup> or a [3+2] 1,3-dipolar cycloaddition (after loss of Tos $^{\Theta}$  or  $x^{\Theta}$ ) <sup>11</sup>

We have employed the following reactions in the synthesis of the previously unknown N-tosylmethylimino derivates  $\underline{1}$ , which are fairly stable crystalline solids. They can well be kept at  $-20^{\circ}$  (under N<sub>2</sub>). The known N-tosylmethylacetamide ( $\underline{7}$ ), obtained by a Mannich condensation of TosH, CH<sub>2</sub>O and CH<sub>3</sub>CONH<sub>2</sub>,  $^{12}$  was O-methylated smoothly with methyl fluorosulfonate (Magic Methyl)  $^{13}$  to give methyl N-tosylmethylacetimidate ( $\underline{1a}$ , Scheme and Table II). The analogous reaction of N-tosylmethylbenzamide  $^{12}$  (8) was unsuccessful

Both  $\underline{7}$  and  $\underline{8}$  were readily converted with  $P_4S_{10}$  in DME<sup>14</sup> to the corresponding thioamides  $\underline{9}$  (mp 142-143°, 81%) and  $\underline{10}$  (mp 142 5-144°, 97%),  $^{15}$  respectively. Reaction with methyl fluorosulfonate gave in good yields the S-methylated thioimidates  $\underline{1b}$  and  $\underline{1c}$ . A Mannich condensation carried out with methyl dithiocarbamate provided methyl N-tosylmethyldithiocarbamate  $^{16}$  ( $\underline{11}$ , mp 150-152°, 72%), from which 1d was obtained in 93% by methylation analogous to  $\underline{1b}$ ,  $\underline{c}$ 

SCHEME and TABLE II

| Compd      | R   | х   | yıeld (%) | mp (°C)                             |
|------------|-----|-----|-----------|-------------------------------------|
| <u>1a</u>  | Me  | ОМе | 80        | 90-93 (dec) <sup>a</sup>            |
| <u>1b</u>  | Ме  | SMe | 73        | 103-104 5                           |
| <u>1c</u>  | Ph  | SMe | 74        | 95-97                               |
| <u>1d</u>  | SMe | SMe | 93        | 122-123                             |
| <u>1e</u>  | Cl  | Cl  | 68        | 70-73 5 (rep <sup>19</sup> 70-73.5) |
| <u>1 f</u> | MeO | Cl  | 72        | 131 5-133                           |
| <u>1g</u>  | MeO | MeO | 65        | 108-110 (sl dec)                    |

a isolated as HSO<sub>3</sub>F salt

Addition of chlorine to TosMIC  $(\underline{2})$  yields N-tosylmethyldichloroformimide  $^{18}$   $(\underline{1e})$  from which either one or both chlorines can be displaced with MeONa in MeOH to give  $\underline{1f}$  and  $\underline{1g}$ , respectively (Table II)

Further synthetic applications of N-tosylmethylimino derivatives ( $\underline{1}$ ) are currently under investigation

## Notes and References

- A.M. van Leusen, R J. Bouma and O Possel, <u>Tetrahedron Lett.</u>, <u>1975</u>, 3487, and references cited therein
- 2. A M van Leusen, B E Hoogenboom and H Siderius, Tetrahedron Lett , 1972, 2369.
- 3 The structures of all compounds are supported by IR, PMR and Mass spectra, correct micro-analyses were obtained for all new compounds except for 4b and 5d (1a HSO<sub>3</sub>F was not determined)
- 4. F Wolfheim, Ber , 47, 1440 (1914)
- 5. R Huisgen, G. Binsch and L Ghosez, Chem Ber, 97, 2628 (1964), also the IR spectrum of 3c is in agreement with IR data reported by Huisgen et al.
- 6 F Asinger, A. Saus, A Offermanns, P Krings and H. Andree, Liebigs Ann. Chem , 744, 51 (1971).
- 7 L Knorr and A Lange, Ber , 35, 3005 (1902)
- Previously oxazoles have been prepared in a two-step process involving 2-azaallyl amions J.W.
   Cornforth and H T Huang, J. Chem. Soc., 1948, 1969, and previous papers
- 9 Recently an imidazole synthesis from N-alkyl-C-phenylnitrones, formulated as a [3+2] 1,3-anionic cycloaddition, was published N G Clark and E Cawkill, Tetrahedron Lett, 1975, 2717
- 10 Review T. Kauffmann, Angew Chem , 86, 715 (1974), or Int Ed., 13, 627 (1974)
- 11 R Hulsgen, H Stangl, H.J. Sturm, R Raab and K. Bunge, Chem Ber , 105, 1258 (1972), K. Bunge, R. Hulsgen and R. Raab, 1bld, 105, 1296 (1972)
- 12. T Olijnsma, J B F.N. Engberts and J Strating, Recl Trav. Chim Pays-Bas, 86, 463 (1967).
- 13 P Beak and J-K Lee, J Org. Chem , 40, 147 (1975), and references cited therein.
- 14. Review K A Petrov and L N Andreev, Russ. Chem Revs , 38, 25 (1969)
- 15 Compd 10 was prepared previously in 20%, mp 140 5-142° by a direct Mannich condensation using thiobenzamide, H Meijer, R M Tel, J Strating and J.B F N Engberts, Recl Trav. Chim Pays-Bas, 92, 72 (1973)
- 16 Compd 11 was prepared analogous to ethyl N-tosylmethyldithiocarbamate, J B F N. Engberts, T. Olijnsma and J Strating, ibid, 85, 1211 (1966)
- 17 Recently, reactions of 2-azaallyl anions derived from dialkyl N-alkyliminodithiocarbonates were reported, D Hoppe, Angew Chem, 87, 450 (1975), or Int. Ed, 14, 426 (1975), and previous paper
- 18 D van Leusen, unpublished results
- 19. T Olijnsma, and J.B.F N. Engberts, Synth Comm, 3, 1 (1973)